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Abstract-The steady, fully developed heat transfer to the walls of a vertical pipe from a dilute suspension 
of relatively massive particles of low Biot number in a turbulent gas is analyzed. In this flow, particle 
collisions play a signilicant role. The thermal energies of the particle and gas phases are balanced using 
two coupled equations. In the particle phase, conduction is calculated from the kinetic theory as a self- 
diffusive transport flux and, assuming negligible transfer of heat during collisions, homogeneous boundary 
conditions are prescribed for the temperature. Solutions of the balance laws highlight the mechanisms 

governing the heat transfer in this regime. 

1. INTRODUCTION 

BECAUSE accurate predictions of heat transfer are 
essential for the design of pneumatic transport lines, 
measurements of effective heat transfer rates through 
the wall have been reported in gas-solid suspensions 
at high velocity (e.g. Jepson et al. [I], Soo [2], 
Boothroyd and Haque [3]) and phenomenological 
models have been proposed to correlate the resulting 
data with local flow parameters [4]. However, because 
detailed studies of turbulent suspensions addressed 
only the dilute flow of small, non-interacting particles 
(e.g. Elghobashi and Abou-Arab [5], Pourahmadi and 
Humphrey [6]), physical analyses of the energy trans- 
fer were limited to regimes where particle collisions 
play a minor role in the flow (e.g. Derevich et al. [7]). 

In a recent paper, Louge et al. [8] consider dilute 
suspensions of massive particles in a gas and show 
that collisions are essential to predict the transfer of 
momentum and fluctuating energy in the particle 
phase. In their analysis, the particles exchange 
momentum through collisions with the wall and 
between themselves, while the mean drag exerted by 
the gas suspends the particles. However, the particles 
are assumed to be massive endugh to be unaffected by 
the turbulent velocity fluctuations. The turbulence is 
modeled using a one-equation closure that incor- 
porates contributions from the particle phase. 

In the present study, we analyze fully developed 
heat transfer in the same regime. To this end, separate 
thermal energy equations are employed for the par- 
ticle and the gas phase. These are coupled through a 
source term calculated by averaging a heat transfer 
correlation for a single particle. In this flow the heat 

transferred to particles in and between collisions is 
negligible. Consequently, conduction in the dilute par- 
ticle phase is treated as a self-diffusive transport flux 
derived from the kinetic theory and homogeneous 
boundary conditions are prescribed for the particle 
phase at the wall. The self-diffusive transport of ther- 
mal energy in the particle phase results from the ran- 
dom motion of particles with different temperatures 
across a surface in the flow. It is analogous to the self- 
diffusive molecular transport in a dilute hard-sphere 
gas. The equations are solved numerically for constant 
wall heat flux or constant wall temperature to predict 
heat transfer rates at the wall and temperature profiles 
across the flow. The resulting predictions are com- 
pared with the measurements of Jepson ef al. [I]. 

We begin with a summary of the hydrodynamic 
treatment for the fully developed flow of massive par- 
ticles in a pipe. Then, through an analysis of the ther- 
mal energy balance of the two phases, we isolate the 
parameters that govern the steady, fully developed 
heat transfer in the same regime. Because the presence 
of particles tends to reduce temperature variations 
across the pipe, we assume that all material and fluid 
properties are constant, so that the earlier hydro- 
dynamic predictions [8] may be employed directly in 
the heat transfer analysis. 

2. HYDRODYNAMIC ANALYSIS 

Louge ef ul. [8] consider the dilute, fully developed, 
steady flow of particles in a vertical pipe. They focus 
on particles massive enough to be unaffected by the 
velocity fluctuations in the turbulent gas. For such 
particles, the hydrodynamic relaxation time of the 
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NOMENCLATURE 

At Archimedes number, p,,py~‘~//l~ s particle shear stress 
c gas heat capacity per unit mass S instantaneous particle slip velocity vector 

(‘P particle heat capacity per unit mass SO particle shear stress at the wall 
Cd drag coefficient Tb average bulk temperature 

C,l coefficient, 0.49 T, average gas temperature 
c2 coefficient, C; 7-P average particle temperature 
d particle diameter TW wall temperature 
D pipe diameter T; gas bulk temperature (44a) 
D, collisional rate of energy dissipation pei Tp” particle bulk temperature (44b) 

unit volume u mean gas velocity along the vertical axis 
DZ working of the fluctuating drag per unit u; fluctuating gas velocity component 

volume on v’ II* shear velocity 
e particle-particle coefficient of restitution 11 mean particle velocity along the vertical 
ew particle-wall coefficient of restitution axis 
E isotropic turbulent dissipation rate V’ particle velocity fluctuation vector 
Y acceleration of gravity 0, particle fluctuating velocity component 
h wall heat transfer coefficient y+ dimensionless wall coordinate, 
H rate of gas-particle heat exchange per unit p(R-fgu*/p 

volume : upward vertical coordinate. 
k gas turbulent kinetic energy per unit mass 
k, gas molecular conductivity Greek symbols 

4 particle conductivity L-l gas molecular heat diffusivity, k,/pc 

I turbulent mixing length A combination of E and c 
tll loading, i.e. ratio of particle to gas mass & voidage 

flow rates E average cross-sectional voidage 
M total heat capacity rate &H eddy diffusivity of heat 
I1 particle number density &M eddy diffusivity of momentum 
N particle normal stress E Young’s modulus 
NU particle Nusselt number “, normalized average gas temperature (38a) 
Nu, pipe Nusselt number, /ID/k, 0, normalized average particle temperature 
P gas pressure Wb) 
PI gas Prandtl number 0 granular temperature 
Pt., turbulent Prandtl number, E~/E&, = 0.9 
Y flux of particle granular temperature ; 

von Karman’s constant, 0.41 
particle mean free path 

rlw wall heat flux P gas viscosity 
Q average gas mass Row rate Pr particle-wall Coulomb friction coefficient 

E: 
radial gas heat flux I4 turbulent eddy viscosity 
axial gas heat flux 5 function in equation (30) 

QP radial particle heat flux P gas density 
QP axial particle heat flux PP particle material density 
I radial coordinate fJ Poisson’s ratio 
R pipe radius Ok turbulent Prandtl number fork 
Rc ratio, 7J5, T gas shear stress 
RE particle Reynolds number, ISlpd/p TO gas shear stress at the wall 
ReD pipe Reynolds number =c collision time 
R% mean slip Reynolds number, lu-vlpd/p Te characteristic time for conduction heat 
s average slip velocity vector, u-v transfer 
s’ fluctuating slip velocity vector T hydrodynamic relaxation time. 

particle velocity fluctuations is much greater than a pipes of relatively small dimensions. In this case, the 
typical roll-over time of the turbulent eddies that is particles are suspended by the drag force exerted by 
based on their integral length scale I and their root- the mean gas flow, but their velocity fluctuations are 
mean-square (r.m.s.) turbulent velocity u’. Because the result of collisions with other particles or with the 
the turbulent eddy size is of the order of the pipe wall. 
diameter, such a flow would typically be observed in For the particle phase, these authors adopt the 
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assumption of molecular chaos central to the treat- 
ment of collisions in rapid granular flows [9] and 
assume that interparticle collisions are nearly elastic 
and frictionless. They also focus on flows where a 
particle undergoes at least several collisions during 
its hydrodynamic relaxation time. Consequently, a 
particle loses only a small fraction of its fluctuation 
energy in and between collisions and the velocity dis- 
tribution function for the particles is nearly Maxwell- 
ian. Finally, they focus on fully developed, steady 
flows. which permits them to carry out averages for 
both the gas and particle properties on long vertical 
strips. Then, no matter how dilute the flow, the control 
volumes can always include a large enough number 
of particles to define the appropriate averages, so the 
dispersed particles may be regarded as a continuum. 
For the particles, they assume that the averages on the 
strips are equivalent to averages based on a velocity 
distribution function. 

With these assumptions, well-established results 
from the kinetic theory of gases lead to constitutive 
relations for the pressure and shear stress in the par- 
ticle phase [IO]. The resulting momentum equation 
for the particles is then modified to incorporate the 
drag force from the gas and the gravitational force. 
For a dilute, fully developed. axisymmetric flow, the 
vertical component of this momentum balance is 

0 = t~(rS)+~(I-e)(u-l~)-p,(l-E)g (I) 

where u and P are, respectively, the vertical com- 
ponents of the mean gas and particle velocities, I’ the 
radial coordinate, ,q the gravitational acceleration, E 
the voidage, p,, the material density of the particles, T 
the hydrodynamic relaxation time of the mean relative 
(slip) velocity between the phases, and S the particle 
shear stress on surfaces at constant radius. 

The shear stress is given by 

Here, 0 is the ‘granular temperature’, expressed in 
terms of the r.m.s. particle velocity fluctuations v’ as 
(3/2)0 = (1/2)v”. Note that this ‘temperature’ is a 
hydrodynamic measure of the agitation of the grains 
that bears no relation to the conventional thermal 
temperature of the particles. Also, the factor 2/R in 
the denominator is a heuristic correction for the very 
dilute flow of relatively large particles that is impor- 
tant when the length of the mean free path between 
collisions L = d/[6,/2(1 --E)] is comparable to the 
radius R of the pipe. 

The hydrodynamic relaxation time is defined in 
terms of the drag force on one particle by 

where p is the gas density and dis the particle diameter. 
For the drae coefficient C.,. the emoirical exoression 

C,, = ;(I +O.I~RC$~“) 
P 

is valid in the range 0 < Rc, < 800, where Re, = 
lu--vlpd/p is the Reynolds number based on the 
average slip velocity between the phases and p is the 
viscosity of the gas [1 I]. 

In these dilute flows, the particle momentum bal- 
ance in the radial direction becomes 

dN/dr = 0 (5) 

where N is &he particle pressure, which is related to 
the particle volume fraction (I -E) by an expression 
analogous to an equation of state in a molecular gas : 

N = p,( I --E)@. (6) 

In order to close the equations describing the par- 
ticle phase, a balance of fluctuating energy is written 
to determine the granular temperature 0. The energy 
equation derived by Jenkins and Savage [9] is, for 
fully developed flow 

Here y  is the diffusive flux of particle fluctuation 
energy and D, and Dz are rates of dissipation of the 
fluctuating energy per unit volume due, respectively, 
to the inelasticity of the particles and to their inter- 
action with the gas. The energy flux is given by the 
kinetic theory as 

25J7l 
Y=~PP'J@~$Q (8) 

where the correction for long mean free path is anal- 
ogous to that in (2). In the dilute limit, for nearly 
elastic particles 

(9) 

where e is the coefficient of restitution for a particle- 
particle collision [9]. The rate of energy dissipation 
per unit volume D2 results from the working of the 
fluctuating force exerted by the gas through the fluc- 
tuating velocity of the particles. It may be written as 

Dz = -(p,/T)(l -E)L$(u;--;) 

= -(p,/T)(I -~)(a-330) (10) 

where primes indicate fluctuating velocities and the 
overbar denotes the average. The term u,!vl is the cor- 
relation between the velocity fluctuations of the gas 
and those of the particles. For this correlation, the 
expression of Koch [I 21 is extended to other than low 
particle Reynolds numbers using a relaxation time T, 
based on the r.m.s. fluctuating slip velocity between 
the two phases : 

- 4 d(u-u)’ , I uiui = - 
.ln T,./O 

(11) 
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For the boundary conditions of the particle phase 
at the wall, we adopt expressions calculated by Jenkins 
[13] in the limit where the coefficient of friction /(r is 
so small that the point of contact of a particle always 
slips during a collision : 

and 

S = -pcN (l2a) 

(I = :NJ(30)[;(1 +r,&f-(I -e,)] (12b) 

where eW is the coefficient of restitution for a particle 
colliding with the wall. 

In the gas phase the momentum equation for fully 
developed, axisymmetric flow is 

O=f%(l.E7)-~(l-E)(~,--U)-~~ (13) 
2 

where 7 = (;c+/c,) du/dr is the gas shear stress on 
vertical surfaces at constant radius and the eddy vis- 
cosity p, is assumed to be given by the one-equation 
closure described, for example, by Reynolds [I41 : 

P, = C,, p Jkl. (14) 

Here I is the turbulent mixing length, C,, = 0.49, and 
k = u$;/2 is the turbulent kinetic energy per unit mass 
of the gas. Following common practice in pipe flow, 
the analysis in [8] assumes that near the wall the mix- 
ing length is proportional to the distance from the 
wall and that near the center of the pipe it is constant : 

{ 

~(1 -r/R), r/R 2 0.7 

‘IR = 0.3K, r/R < 0.7 
(15) 

where ti = 0.41 is von Kirrnan’s constant. 
In addition, the balance of turbulent kinetic energy 

k is obtained from that of Elghobashi and Abou-Arab 
[S] by ignoring the voidage fluctuations E’, which are 
zero for the steady velocity distribution function, and 
by suppressing other terms on the basis of an order- 
of-magnitude analysis [8]. For fully developed flow, 
the result is 

--p&E- $‘(I-s)(Zk-u;o;). (16) 

The isotropic dissipation rate E is modeled after 
Reynolds [14] using E = C2k3”/f, where C2 = Ci. 
Following common practice we adopt o, = I. 

Boundary conditions for the gas phase are enforced 
at a dimensionless distance y+ = p(R-r)u*/p z 30 
away from the wall, where U* = ,/(ET~/~) is the shear 
velocity and T,, is the gas shear stress at the wall. In 
dilute flow, the gas velocity at small values of y+ is 
approximately given by the universal ‘law of the wall’ : 

u/u* = 
5 Iny+ -3, 5 < )‘f < 30 

(l/K) lny+ +5.7, y+ 2 30 . (17) 

The shear velocity is calculated from the global 
momentum balance : 

d(y)/& = -2plc*‘/R+2S”/R-gp,(l -C) (18) 

where S, is the particle shear stress evaluated at the 
wall and E the average voidage across the pipe. 
Because the production and dissipation of k are nearly 
equal near the wall. and because the molecular vis- 
cosity is much smaller than the eddy viscosity at 

) *+ z 30, there is no flux of turbulent kinetic energy 
there, so 

Sk/& = 0. (19) 

Finally, radial symmetry implies that the rudial 
derivative of the velocities and the temperatures van- 
ish at the centerline of the pipe. 

The resulting non-linear, coupled, two-point 
boundary value problem of equations (I), (5)-(7), 
(I 3). (I 6) subject to the boundary conditions (I 7). 
(19) are solved using the quasi-linearization method of 
Bellman and Kalaba [I 51. In Figs. I and 2, the results 
are compared with velocity and turbulent kinetic 
energy profiles measured by Tsuji et al. [ 161 for typical 
conditions. In these the loading m is defined as the 
ratio of the particle to gas mass flow rates. Because a 
treatment that ignores shear stress in the balance of 
forces for the particle phase (dashed line in Fig. 1) 
clearly fails to reproduce the observed velocity profile, 
we conclude that particle collisions play an essential 
role in these flows. 

In addition, the data of Tsuji ef al. [ 161 suggest that 
the average particle velocity is positive at the wall. 
Because the gas velocity is zero there, particles with 
relatively small terminal velocities may acquire an 
average velocity greater than that of the gas over a 
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FIG. 1. Calculated profiles of gas and particle velocities 
normalized by the centerline air velocity u,, = 9.65 m s-’ 
for relatively dilute Rows of 500 pm polystyrene particles 
(p, = I .02 g cm-‘) at a loading ni = I. I. The solid and open 
circles represent the data of Tsuji er al. [I61 for gas and 
particle velocities, respectively. The dashed lines represent 
particle velocities predicted by an analysis that would ignore 
particle shear. In all calculations we adopt a coefficient of 
restitution e = 0.9 for particle-particle collisions. e, = 0.7 
for particle-wall collisions, and a coefficient of dynamic fric- 

tion pr = 0.2 between a particle and the wall. 
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FK. 2. Calculated profiles of normalized r.m.s. gas velocity 
Huctuations ~~‘/~~,, for relatively dilute flows. The solid circles 
reprcscnt the data of Tsuji PI trl. [lb] for 100 !tm particles. 
ucl = 12.8 m s- ‘. nt - 1.3: the open circles are 500 pm 
particles, LI,, = 13.3 m s- ‘. nr = 1.3. The solid and dashed 
lines are the respective predictions or the analysis. which also 
yields (I -E) = 0.16%. 0’ ‘jrr,, z I .X% for 200 /lrn particles. 
and (I -67 = 0.18%. 0’ ‘/tr,, = 2% for 500 pm particles. The 

dotted line is the prediction for clear gas. 

significant region away from the wall. see [or example 
the 200 Ltrn particles employed by Tsuji et r/l. The 
momentum transport in the particle phase provides 
the mechanism that is responsible for this (ref. [8], 
Fig. 2(a)). The moderate discrepancies between the 
mcasurcd and the predicted velocity profiles near the 
wall appear to be associated with an over-prediction 
or the magnitude ol’the particle phase viscosity. This 
effect may result from the admittedly crude rare gas 
correction in equattons (2) and (8). 

Finally, the hydrodynamic analysis also predicts a 
reduction in the turbulent velocity fluctuations associ- 
ated with the presence of particles and that this 
reduction disappears with increasing particle diameter 
(Fig. 2). These effects are primarily related to the 
modifications of the mean gas velocity profile. Because 
the drag term in equation (13) increases with particle 
volume fraction, the introduction of particles flattens 
the gas velocity profile in the interior. so the pro- 
duction of turbulent kinetic energy through the work- 
ing of the mean gas shear in (16) decreases there. In 
addition, because the drag term decreases strongly 
with increasing particle diameter, the reduction of the 
turbulent fluctuations is less pronounced for large 
particles. These trends will be.particularly important 
in the thermal analysis that follows. 

3. THERMAL ANALYSIS 

In this section, we write balance laws for the thermal 
energy of the gas and particle phases. We assume that 
particles are massive enough for the flow to lie within 
the regime studied by Louge et al. [8] but have Biot 
numbers small enough to ignore temperature vari- 
ations in their interior.. 

3. I Gus p/?f/se 
In a dilute turbulent flow, the thermal energy bal- 

ance Tar the gas phase has nearly the same form as 
the corresponding equation for the pure gas. It is 
obtained by multiplying appropriate terms by the 
voidage. Because in fully developed flow radial vel- 
ocities vanish., it becomes 

where c is the heat capacity per unit mass of the gas, 
Qr and Q, heat fluxes through the gas in the radial 
and axial direction, respectively, and H the average 
rate of energy per unit volume supplied by the particle 
phase to the gas. In this formulation, r, is the tem- 
perature of the gas averaged over time. In keeping 
with thcsimplc turbulcnccclosure in (14) and (15) we 
employ an eddy diffusivity cl, to relate the correlation 
between the instantaneous fluctuations of tem- 
perature and velocity or the gas to the temperature 
gradient. In this case. heat fluxes take the form : 

Qr = (kg+pca,,)c~ 

and 

(2la) 

(‘lb) 

where k, is the gas conductivity. Following common 
practice, we assume that the turbulent Prandtl number 
Pr, = sh,/.sC, is 0.9, where Ed = pJp is the eddy diffus- 
ivity of momentum. 

3.2. Parride phuse 
For nearly elastic particles, a simple analysis per- 

mits us to ignore the heat exchanged by thermal con- 
duction during a collision between a particle and the 
wall. Using the elastic collision model of Timoshenko 
and Goodier [17], we compare estimates or the col- 
lision time rc with the timer, to equilibrate the particle 
temperature by conduction through the area of 
contact. By approximating the relative velocity of the 
particles before collision as the square root of the 
granular temperature, these estimates are written in 
terms of average flow parameters 

and 

where cp and k, are the particle’s heat capacity per 
unit mass and thermal conductivity, respectively, and 
A = 3(l -cr’)/ZE combines Young’s modulus E and 
Posson’s ratio o Tar the solid particle. Here, the heat 
conducted during a collision may be ignored as long 
as the following ratio is large : 
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Because for the flows under consideration. Rc is of the 
order 106-IO”, the solid thermal conductivity plays no where the correction for long mean free path is anal- 

role in the mechanism of heat transfer, and a particle 
ogous to that in (2) and (8). Note that, as a conse- 

exchanges virtually no heat during its nearly instan- quence of this correction, the fluxes approach zero as 

taneous collisions with the wall. These observations (I -E) vanishes, so that equation (23) remains valid 

are consistent with the more detailed theoretical 
in this limit. 

analysis of Sun and Chen [IS]. This argument implies In more concentrated systems of particles the con- 

that the flux of thermal energy from the wall to the tribution of the particle self-diffusive conduction to 

particles is zero. Then, because the granular tem- 
the energy flux is diminished and collisional con- 

perature does not vanish in the neighborhood of the 
tributions to the particle energy flux due to conduction 

wall, the gradient of the thermal temperature in the through contacts become, potentially, more impor- 

particle phase must be zero there. tant. However when the ratio Rc in (22) is much 

In a wider context, because experience shows that greater than one, the collisional contribution to the 

heat transfer rates are often a weak function of the thermal energy flux in the particle phase is negligible 

thermal conductivity of the solid material, the transfer even in concentrated systems. In this case, the net 

of heat by conduction through particles in directcon- 
result of increasing the concentration is to decrease 

tact is generally negligible in gas-particle suspensions the total energy flux in the particle phase. 

at high velocities [l9]. 
The establishment of a balance equation for the 3.3. Sourer [erm 

thermal energy of the particle phase requires the defi- The source term H in equations (20) and (23) aver- 
nition of an average particle temperature r,,. Because ages the contribution from all particles to the thermal 
unlike other particle flow parameters, the thermal energy of the gas. Because the fluctuating velocities of 
energy of the particle phase varies along the pipe, we the gas and the particles are much smaller than their 
cannot adopt a definition of 7’, based on long vertical average values [8], the flow around each particle may 
strips. Instead we assume that time or ensemble aver- be regarded as nearly steady. Consequently, to evalu- 
ages of the particle thermal temperature carried out ate the heat convected away from each particle in 
at a point are equivalent to the strip averages dilute flows, we adopt a correlation appropriate for a 
employed in the hydrodynamic analysis. In this case single sphere in a steady, uniform, infinite gas stream 
the balance equation for the thermal energy of the [20] : 
particle phase is 

Nu = 2 + (0.4Re’,” +0.06Re”“)Pr”-“ (25) 

where NM is the Nusselt number based on the particle 
In such dilute systems, the radial and longitudinal diameter, and the particle Reynolds number depends 
fluxes Qp and Qg arise from the self-diffusive transport on the instantaneous magnitude of the slip velocity S 
of thermal energy carried by the fluctuating particles, between the gas and the particle. 
and the average transfer of heat between colliding Because Nlr depends explicitly on the instantaneous 
particles is small compared to the self-diffusive flux. slip, it is conveniently averaged using a velocity dis- 
In the context of the kinetic theory, this self-diffusive tribution function f(S). This function is normalized 
transport of particle thermal energy is analogous to so that its integral over the entire velocity space equals 
the self-diffusive molecular transport in a dilute hard- the number density of particles n at the point under 
sphere gas. We will refer to it as the ‘particle self- consideration 
diffusive conduction’. In general, because particles 
and gas have different thermal temperatures, they may 
exchange energy during this transport. The product 

f(S) dS z n = (I -~)/(7c/6)d~. (26) 

of the particle collision frequency and a character- 
istic time for this transfer of heat is of order Using this distribution, the average (II/) of any func- 
[@“‘(I -s)(l +A/R)]c,p,d/k,. Because for the flows tion of the slip’ $(S) is 
under consideration this product varies between 4 and 
IO*, it is large enough to neglect the energy exchange 
between collisions and, in these dilute, hardly dis- (II/> =; W) f(s) ds. (27) 

sipative flows, the particle fluxes of thermal energy QF 
and @ may be derived from the self-diffusion of a In the present treatment we assume that this average 
hard-sphere gas [IO] is equivalent to ensemble or time averages employed 

for the gas and particle phases. To evaluate the source 
term, we multiply the rate of energy transferred from 
each particle to the gas by the total number of particles 

and per unit volume. Upon averaging the result, we obtain 
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H= (I-E);$(T~-TJ(Nu). (W 

To average the fractional powers of Rc arising in (29, 
we write the magnitude of the instantaneous slip 
Reynolds number in the form 

Re = 

( 

pdJ(s’+2k+30) 

P > 
[I + ((s’ ; k. 0, s,] ’ ? 

(29) 

where s = (u-v) is the average slip along the pipe 
axis, s’ the fluctuating slip, and 

Upon integrating the binomial expansion of (I + 5)” ’ 
through the velocity distribution function, WC find 

(Re”) = 

x 
[ 

I+;(<)+; f-l (5?>t-o((i3>) 
(- > 1 

so, upon ignoring terms of order higher than the lirst 

(Re”) z 
pdJ(s’+2k+30) (’ 

)[ 

l-u (LI:l’:) 

I’ 1 s’+2k+30 

(31) 

Finally, with CI = l/2 or 2/3, respectively, we have 

> 
+0.06Pr”.” 

X 

(32) 

where an estimate of (r&i) is provided by (I I). 
Because the contribution of this term is relatively 
small, the rate of heat transfer between the particles 
and the gas is influenced primarily by the mean slip. 

3.4. Fully-developed heat tr.ans$et 
To discuss the mechanisms of heat transfer in this 

regime, we focus on two separate examples. In the 
first, a constant heat flux qw is imposed at the wall. In 
the second, a constant temperature T, is maintained 
there. In either case, the thermal energy flux carried 
by the particles vanishes at the wall. Then, because 
the self-diffusive conductivity of the particles is finite, 
the thermal temperature of the particle phase satisfies 
the homogeneous boundary condition at the wall 

ar 
2 = 0. 
?r 

In the gas phase, because the turbulent diffusivity 
vanishes at the wall 

where q,, remains an unknown obtained by iteration 
when a constant 7; is imposed. At the centerline, 
radial symmetry requires iiT,,/& = ZT,/?r = 0. 

In order to define what is meant by fully developed 
thermal flows in these two cases, we first introduce 
the total heat capacity rate M and the avcragc bulk 
temperature Th 

M = 
s 

R [pcur:+p,,c,,r(l --E)]~KI. dr 
0 

=cQ I+m: 
( > 

(34) 

and 

Th E -! M ,; [p(.u~T~+p,,(.~(.( I --E)T,,]~ dr 
s 

(35) 

whcrc Q is the average mass flow rate of gas. and rrr 
the average loading. In steady turbulent flow, a cross- 
sectional heat balance shows that the rate of change 
of the instantaneous bulk temperature along the pipe 
is related to the heat flux across the wall, so on average 

(36) 

This balance is nearly exact; because instantaneous 
velocity and temperature fluctuations are much 
smaller than their time-averaged values. we ignore in 
this analysis temporal moments of order higher than 
the first in the cxprcssions for Th and M. 

WC define the average heat transfer coefficient /I at 
the wall as 

h(T,-T”) = (I,~. (37) 

Fully developed thermal flows are defined as flows in 
which the temperature profiles are similar, i.e. the 
average normalized temperatures 

0, = (T,-TJ(T”-T,) W-W 

0, = (T,-Tw)/(Tb-T,) (38b) 

are independent of Z. Because from (33b), (37) and 

(384 

it follows that h is also independent of Z. 
When the heat flux ~7~ is constant at the wall 
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and the balance laws (20) and (23) bccomc ordinary 
diffcrcntial equations (ODES) in I’. Thus for tho gas 

d7-,, I d 

and for the particles : 

dT,, 1 d 

whcrc dT,,/d: = dT”/d: is a constant and Qr and Qf 
arc given by (2 I a) and (14a). 

For constant wall tempcraturc, through diffcr- 
entiation of (36) and (38) the balance laws (20) and 
(23) may be rearranged as two coupled ODES. Thus 
for the gas : 

27lR I d _I 
Cpd, -j- l/u = ;, d, (@,I+ ;$,)+H (41a) 

with . 
,I_(@, = -(k,+p(.~,,)t$ 

and Q, given by (2la) : and for the particles : 

(I -s)ppcpl.(Jp ?; y, = I’ d, I d (r~3-t ::(Q:)-H 

with 

(42a) 

(42b) 

and Qp given by (2421). Because I/,, is unknown a 
priori, with constant wall temperature the solution of 
(41) and (42) must be found by iteration. 

In the hydrodynamic analysis the governing equa- 
tions for the flow give rise to tight dimensionless num- 
bers. The loading nr and the Reynolds number Re,> 
based on the superficial gas velocity and the pipe 
diameter D define the flow conditions. Combinations 
of the particle and gas properties product the Arch- 
imedes number AV = p,,pgd’/p’ and the density ratio 
p,,/p. The size of the particles relative to that of the 
pipe is D/d. Finally, the coefficients e. c,, and pr are 
dimensionless collision properties. In addition, the 
Prandtl number of the gas and the ratio c,/c arise 
from the thermal equations (20) and (23). Because of 
the boundary condition (33b). it is convenient to make 
the temperatures of both phases dimensionless 
through the product (y,R/k,). In this case, the slope 

of the dimensionless gas tcmpcraturc profile vs 
relative radius r/R is always (l/r:) z I at the wall. 
Finally. because heat transfer at the wall occurs 
through the gas phase alone. the Nusselt number 
Nu,, = /ID/~, is a natural measure of /I. 

4. RESULTS AND DISCUSSION 

The balance equations for fully dcvelopcd heat 
transfer are first written as a set of four coupled. linear. 
first-order ODES. Thcsc equations are integrated from 
the centerline of the pipe to the wall using a fourth- 
order Runge-Kutta algorithm, combined with an 
itcrativc Newton-Raphson scheme to satisfy the 
boundary conditions at the wall. 

Bccausc the closure model (14) and (15) is only 
valid in the turbulent core, in the thermal analysis we 
use values ofthe flow parameters that are extrapolated 
through the relatively thin buffer and viscous sub- 
Iaycrs. In particular, because the particle velocity and 
granular tcmpcraturc have finite values at the wall, 
thcsc are cxtrapolatcd assuming a constant gradient 
through that region. This assumption is rather inccn- 
sequential. because for small friction, the predicted 
heat transfer tates arc relatively insensitive to the 
coefficients of particle friction and restitution and to 
large variations in the self-diffusive conduction fluxes 
(2421) and (24b) of the particle phase. In addition. fool 

the lIows under consideration. variations in the form 
of the turbulent kinetic cncrgy protilc near the wall 
do not alfect the trends predicted by the thermal 
analysis. As a result. WC simply assume that /i varies 
linearly with the radius between its predicted value at 

J’ L = 30 and zero at the wall. In the future, a refined 
thermal analysis could invoke near-wall turbulence 
models (see for example Pate1 et N/. [Zl]). However. 
to bc meaningful, such a refinement should also treat 
the effect of massive particles on the near-wall 
turbulence. 

To highlight the parameters that govern the heat 
transfer in this regime, we focus on the case where a 
constant heat fhtx is imposed at the wall, and we 
illustrate the discussion by integrating equations (39) 
and (40) with the help of simplifying hypotheses. 
However, note that the results presented in the figures 
are obtained through the numerical integration of the 
complete ODES. We begin with a discussion of the 
effects of introducing particles in the flow at incrcas- 
ingly higher loadings. Then we discuss the effect of 
the relative size of the pipe and the particles. Figure 3 
shows typical temperature proflcs across the pipe. 
In general. the particles affect heat transfer in two 
opposite ways. 

First, they generally reduce the turbulent kinetic 
energy of the gas [8], unless they are so very massive 
that turbulence is augmented, perhaps by their own 
wakes or by deflections of the mean flow streamlines 
induced by the particles [16]. Because at relatively 
small loading the source term is dominated by the 
turbulent conduction term in the gas energy equation 
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F~ti. 3. Typical average _eas (6) and particle (p) temperature 
proflcs with constant q,, for the How conditions Re,, = 
15000. p,,/p = 2100, Ar = 814, and R/c/= 90. Temperature 

is made dimensionless through the product (q$,R/k,). 
The thermal parameters are typical of suspensions of glass 
particles in air with C,/C = 0.8 and Pr = 0.7. The solid lines 
are predictions 01 the complete analysis for w = 0.4. In 
this cusc, /U/l,, = I .Ol, whcrc /I,, is the heat transfer cocllicicnl 
for the same How of cicar gas. The dashed and dotted lines 
correspond to ~1 = 0.4 and 3.0. rcspcctivcly. Thcsc lines arc 
hypothetical predictions from a numerical model that arti- 
ficially ignores the turbulence reduction associated with the 

introduction 01 particles. 

(39). the gas heat flux Q remains nearly unchanged 
for small 177, so lower turbulent transport coefficients 
result in higher gradients of gas temperature in the 
pipe. Conscqucntly, as Fig. 3 indicates, the gas tem- 
perature predicted by the complete analysis (solid 
line) is lower than if turbulence were not reduced 
(dashed line). In addition, because of its coupling 
through the source term. the particle temperature also 
dccreascs with decreasing turbulence intensity. 

Second, particles promote the radial transfer of 
thermal energy through particle self-dilfusive con- 
duction. Consequently, through the source term H. 

they increase the temperatures of both phases with 
increasing loading. To illustrate this effect alone, Fig. 
3 shows hypothetical temperature profiles for two 
loadings (dashed and dotted lines), where the tur- 
bulence intensity is artificially kept identical to that of 
clear gas. In the absence of turbulence reduction, as 
the dotted line in Fig. 4 indicates, the heat transfer 
cocfficicnt would rapidly increase with m. 

Therefore, particles have competing effects on the 
tcmperaturc profiles. On the one hand, they lower 
these profiles through turbulence reduction in the gas, 
and on the other, they increase them through particle 
self-diffusive conduction and the source term. The 
resulting changes in the difference (r,” - P) between 
the wall and bulk temperatures affect the heat transfer 
cocfficicnt in (37). For loadings small enough that 
(777rJc) << I. the total heat capacity rate M in (34) is 
approximately equal to cQ. In this case, through (35). 
the difference between the wall and bulk temperatures 
is approximately 

( T, , .  - T") % (T,. - r;, + 177 : (T, - T;) (43) 

30 L I I 
0 1 2 3 

m 

FIG. 4. Predictions of the analysis for Nussclt number Nu,, 

vs loading ~1 for the conditions of Fig. 3. The solid and heavy 
dashed lines are predictions of the thermal analysis with 

constant ~1,~ and constant r,,. respcctivcly. ‘The dotted and 
thin dashed lines are hypothetical predictions of numerical 
models that ignore the gas turbulence reduction and the 
particle self-dirlusivc conduction. rcspectivcly. The heavy 

lint corresponds to small particles with D/t/ = 250. 

where 7: and Tz reprcscnt the cross-sectional avcragc 
tcmpcraturcs for each of the two phases : 

In most instances at small loading, the effects of tur- 
bulence reduction in the gas dominate or balance the 
effects of particle self-diffusive conduction, so 
(T,, - Ti) and (T,, - TE) increase with 177, or at least 
become independent of it. Thcrcforc. through (43). 
(r, -Th) incrcascs with 177, so the heat transfer 
coefiicicnt generally dccreascs with 177 at small loading. 

This trend would persist at higher values of 177 in 
the absence of a particle self-diffusive conduction flux. 

In this hypothetical-and rather unrealistic--case 

where self-ditfusive conduction would vanish, cqua- 
tion (40) yields the following algebraic cxprcssion for 

the dimensionless temperature difference bctwcen the 
two phases : 

where the overbar denotes the cross-sectional average 

and (Nu) is given by (32). For typical conditions. this 

difference is small at any radial position. Therefore, if 
WC assume for simplicity that [~c~~+~~c,,(l --E)c] is 
constant across the pipe, the sum of equations (39) 
and (40) would integrate to 

(46) 

where LX is the molecular heat ditfusivity of the gas 
and, because in this case (Tw - Ti) z (T,, - T,h) z 
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CT,, -m any reduction in eC, would increase 
(r,, - rh) and reduce /I. Therefore, in the absence 
of particle self-diffusive conduction, the heat transfer 
coefficient would decrease as long as turbulence inten- 
sity decreased with loading (thin dashed line in Fig. 4). 
Because the opposite behavior is generally observed at 
relatively high loading, this discussion suggests that 
particle self-diffusive conduction is an essential mech- 
anism of heat exchange in these flows. 

In fact, with particle self-diffusive conduction. the 
effects of reduction in the gas turbulence intensity 
become less significant as loading increases. The direct 
integration of either equation (39) or (40) yields 

(47) 

where the overbar denotes the cross-sectional average. 
Assuming uniform profiles of E. LI and c, (I -K) c< 1 
and IW,,/L. >> I, this equation simplifies to 

Our experience in solving equations (39) and (40) 
numerically is that the temperature ratio in (48) is a 
weak function of ~1 for values of 111 large enough that 
relative changes in turbulent intensity are insig- 
nificant. As equation (48) shows, in this limit the heat 
transfer coefficient grows linearly with m, and the 
growth is more pronounced for smaller particles or 
larger pipes (Fig. 4, heavy line). By inspection, it is 
clear that the source term is responsible for this 
through the factors (R/d)’ and (Nu) in (48). There- 
fort, in the absence of a source term, the transport of 
a conscrvcd scalar would not be enhanced by the 
introduction of particles with high loading, despite 
the presence of significant particle self-diffusion. Ebert 
et ul. [22] made a similar observation in the different 
regime of circulating Ruidization. There. they showed 
that, although heat transfer is greatly enhanced by 
particles, the rate of mass transfer from a solid block 
of naphthalene mounted flush with the bed wall is no 
greater than in the absence of particles. 

In the regime under consideration, the relative size 
D/d of the pipe and the particles affects the wall heat 
transfer primarily through the two competing mech- 
anisms of gas turbulence reduction and particle self- 
diffusive conduction. First, through the drag term in 
(I 3) and the working of the mean gas shear in (I 6), 
the production of gas turbulence is reduced in the 
interior with increasing D/d. Consequently, in the 
absence of particle self-diffusive conduction, the wall 
heat transfer would decrease with greater D/d. How- 
ever, because the source term grows approximately 
with (D/d)‘, larger values of this ratio also produce a 
greater exchange of heat between the particles and the 
gas and, consequently, the presence of particle self- 
diffusive conduction results in a flatter gas tem- 
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FIG. 5. Predictions of the analysis compared with the data 
of Jepson et (11. [I] for sand particles of 422 Ltm < d Q 599 
Irm suspended by air in a pipe of 38 mm in diameter. Here, 
Re, = 45 000, pJp = 2 100. 6300 < Ar < I8 000, c,/c = 0.8 
and Pr = 0.7. The solid and dashed lines are predictions for 
422 and 599 pm, respectively. For these conditions, 0”’ is 

approximately I % of the gas velocity at the centerline. 

perature profile and greater wall heat transfer. This 
effect, which dominates turbulence reduction at rela- 
tively high loadings, is captured by equation (48). At 
these loadings, it explains why Boothroyd and Haque 
[3] observed that heat transfer coefficients are 
increased by the solids far more in larger pipes than 
smaller ones. 

In general, the present thermal analysis provides 
explanations for all trends summarized by Boothroyd 
and Haque [3] for the regime under consideration. 
For example, these authors reported a sharper drop 
of heat transfer coefficient at low loading for higher 
values of Re,. The relatively greater reduction of tur- 
bulence associated with increasing Re, provides the 
mechanism responsible for this. Further discussions 
of the flow parameters and suspension properties 
affecting wall heat transfer in this regime are provided 
by Mohd. Yusof [23]. 

Figure 5 compares predictions of this analysis with 
the experimental data of Jepson et al. [I]. In those 
experiments, particle size ranges from 422 pm to 599 
pm. For these particles, the Biot number Bi = /Id/k, 
and Rc are of order 10-I and lo”, respectively, and 
the ratio of particle hydrodynamic relaxation time to 
a typical roll-over time of turbulent eddies is approxi- 
mately 20. Because heat transfer is a strong function 
of particle diameter through the source term H, we 
bracket the data with predictions corresponding to 
the limits of the experimental size distribution. As Fig. 
5 indicates, the predictions are satisfactory, and they 
exhibit the minimum heat transfer coefficient observed 
at low values of loading. The calculations also 
demonstrate the importance of measuring the correct 
particle size in the experiments. 

5. CONCLUSIONS 

In this paper, we have analyzed the fluid dynamics 
and heat transfer of fully developed suspensions of 
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massive particles in a vertical pipe. In this regime, we 
have shown that, because they introduce shear stress 
in the particle phase, collisions cannot be ignored even 
in relatively dilute suspensions. In addition, although 
they are too rapid to permit the direct exchange of 
heat between particles and the wall, collisions drive 
the mechanism of particle self-diffusive conduction 
that flattens the particle temperature profile and 
thus maintains a significant temperature difference 
between the gas and the particle phases. Therefore as 
loading increases, the two phases exchange greater 
amounts of heat that produce growing heat transfer 
coefficients through flatter gas temperature profiles. 
In contrast, at low loading, the heat exchange between 
the two phases is too small to enhance the wall heat 
transfer despite the presence of particle self-diffusive 
conduction. In that case, because their introduction 
generally dissipates turbulence, massive particles 
reduce the heat transfer to the wall. 
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